UsING XILINX’S DDR3 CORE IN A VIRTEX 6 FPGA

Jeffrey A. Walck

Xilinx’s DDR3 core is a powerful piece of circuitry, enabling high data bandwidth from a
variety of possible memory configurations. However, its sophistication can prove daunting

and confusing.

Xilinx’s User Guide “UG406"” describes the operation of their DDR3 core in a Virtex 6. The original
version 1.0 of the user guide had sketchy, and sometimes incorrect, information. Fortunately UG406
has evolved to be much more informative and useful. This tutorial does not substitute for the user
guide, but instead provides some handy hints and tips that can be used in concert with the user guide.

1.0 Code Module Structure

The structure chart below shows the organization of code modules that make up the core. These are
the modules that are listed in the “Example” design directory. The function of each code module is
described in chapter 1 of the user guide, within the paragraph “Directory Structure and File

Descriptions,” and in Tables 1.1 through 1.13.

Example_top

e - —— —— ————
init_mem_pattern_ctr mcb_traffic_gen chipscope modules

|

|

|

memc ;‘ top clk_ibuf iodelay_ctrl infrastructure
7 A ibufgds A tmch_flow_control icon
ibufa ! +cmd_gen i
] o bufg mmem_adv bufg pipeline_inserter ila
m’em_mt!u ./ ”f‘) idelayctrl prbs_gen vio_async_in
/ || N g (all unisim) -afifo vio_sync_out
/ \ s +read_data_path
phy_top mc ui_cmd ui_wr_data ui_rd_data rd_posted_fifo
{ rd_data_gen
]I afifo
l [[‘ | +tg_status
ecc f ecc_dec fix ecc_gen ecc_merge_enc bank _mach rank_mach col_mach Lwnte_data_path
II ecc bu ‘“ _] - ge_| - ! k* h col f} 7d ~P th
‘ ram32m bank_common |:"""'_“""' - ram32m Lwr_data_gen
|) L round_robin_arb 'I""Lfc ommon ts-l"‘:v'_da“_‘?""'
| atb mux_ 3 L round_robin_arb v6_data_gen
| arb_select
[arb_row_co
round_robin_arb
bank_cntrl
bank_control
bank_queue
bank_state
phy_init phy_control_io phy_data_io phy_clock_io phy write phy_wrivl phy_read phy_rdM phy_pd_top phy_ocb_mon _top phy_dly_ctrl
\ phy_dqs_iob il L phy_pd I—ph),_v:u‘ b_mon
\ phy_dm_iob
phy_dq_iob
\ ! ’ phy_rdclk_gen phy_rddata_sync phy_rdctl_sync
\ // 3]
\ / rd_bitslip
\ 7
iodelay circ_bufffer
oserdes 7
oddr iodelayel RAM(unisim)
(common) oserdesel

ibuf_low_pwr

2.0 Master State Machine State Listing
The table below is excerpted from the code module phy_init.vhd and lists the states that the core’s
internal state machine progresses through during initialization. These states can be monitored using
Xilinx’s ChipScope™ internal logic analyzer
described in paragraph 3.0.

-- Master state machine encoding

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

INIT IDLE

INIT WAIT CKE_EXIT
INIT_LOAD_MR

INIT LOAD MR_WAIT
INIT_ZQCL

INIT WAIT DLLK_ZQINIT
INIT WRLVL_START

INIT WRLVL_WAIT

INIT WRLVL_LOAD_MR

INIT WRLVL_LOAD_MR_WAIT
INIT WRLVL_LOAD_MR2

INIT WRLVL_LOAD_MR2_WAIT
INIT RDLVL_ACT
INIT_RDLVL_ACT_WAIT

INIT RDLVL_STGl_WRITE
INIT RDLVL_STG1l_WRITE_READ
INIT RDLVL_STG1_READ

INIT RDLVL_STG2_WRITE
INIT RDLVL_STG2_ WRITE_READ
INIT RDLVL_STG2_READ

INIT RDLVL_STG2_ READ_WAIT
INIT PRECHARGE PREWAIT
INIT PRECHARGE

INIT PRECHARGE_WAIT
INIT_DONE

INIT IOCONFIG_WR
INIT_IOCONFIG_RD
INIT_IOCONFIG_WR_WAIT
INIT IOCONFIG_RD_WAIT
INIT _DDR2_ PRECHARGE

INIT DDR2_PRECHARGE_WAIT
INIT REFRESH

INIT REFRESH WAIT

INIT PD_ACT

INIT PD_ACT_WAIT
INIT_PD_READ

INIT REG_WRITE

INIT REG WRITE_WAIT

INIT DDR2_MULTI_RANK

INIT _DDR2_MULTI_RANK WAIT

excerpted from phy init.vhd

. They can also be watched during simulation as further

std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5
std_logic_vector (5

(MIG 3.4)

3.0 Speeding up Simulation of the Core
The core, together with behavioral models of the DDR3 SDRAM makes for a very complex piece of logic.
Attempting to simulate it using typical software-only simulation (such as Modelsim) will result in such
long run times as to be impractical even if storage of the resulting enormous files was not an issue. To
get around this problem, select VHDL generic options that skip over parts of the core initialization.

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

L T | (I | | B I 1}

L T T | (| (| (| | | | | | O [O |

"0oo0o000"; --0
"000001"; --1
"000010"; =2
"000011"; <=3
"000100"; --4
"000101"; ==5
"000110"; --6
"000111"; -=7
"001000"; ==8
"001001"; =9
"001010"; --A
"001011"; -=B
"001100"; ~=C
"001101"; D
"001110"; --E
"001111"; --F
"010000"; == 10
"010001"; ==,
"010010"; -=-12
"010011"; -=13
"010100"; --14
"010101.%; ~=15
o1o110M™; -=16
"010111"; =15
"011000"; ~=~18
"011001"; =~=1L9)
"011010"; --1A
"011011"; -=1B
"011100"; ==1€
"011101"; --1D
"011110"; --1E
"0111311"; ~=1F
"100000"; ==20
"100001"; —=21
"100010"; ==22
"100011"; ==23
"100100"; =24
"100101"; ==25
"100110"; --26
$100110"; -=27

Unfortunately, knowing which options to select is not clear-cut. Some of the generic settings described
in the comments are outright wrong, or do nothing. For example, in the listing below, for
“SIM_INIT_OPTION,” the skip-power-up-delay generic value “SKIP_PU_DELAY” does not work. That s,
the power up delay takes place even with this option selected. For each of generic options below, note

the selection that was made along with the comments describing what actually works. These are the
options needed to minimize simulation times during the RAM’s initialization. These “SKIP” options
should only be used when compiling for simulation. For operation in hardware, the “NONE” options
should be selected.

Similarly, WRLVL = “OFF” turns off the time-consuming write leveling operation for simulation. WRLVL
should be set to “ON” for operation in actual hardware.

In example design, some of the top level generics are wrong. The following addition/changes to the generics are needed to skip
DRAM initialization, calibration, and write leveling during simulation:

SIM_INIT OPTION = "SKIP_ INIT" (string)

-- # = "SKIP_PU DLY" - Skip the memory

- initilization sequence,

-- # = "SKIP INIT" - Skip the memory -- JW this actually skips the sequence
- initilization sequence,

-= = "NONE" - Complete the memory

-= initilization sequence.

SIM CAL OPTION = "SKIP CAL" (string)

-- # = "FAST CAL" - Skip the delay

- Calibration process,

-- # = "SKIP CAL" - Skip the delay -- JW this actually skips calibration
- Calibration process,

-= = "NONE" - Complete the delay

-= Calibration process.

WRLVL = "OFF" (string) -— JW changed to OFF for simulation
-- # = "ON" - DDR3 SDRAM
-= = "OFF" - DDR2 SDRAM.

-- This was needed to make the reset work correctly at the top level:

RST ACT LOW =0 (integer) -- JW change
-- =1 for active low reset,
-- =0 for active high.

4.0 Propagation of Clocks through the Core

Following the progression of multiple clocks through the core can be a chore. Some of the clocks are
used within the core itself for write and read operations. Some must be routed back out of the core to
enable user logic to synchronize with the core’s user interface (Ul), and some are routed to the RAM
devices themselves.

The handy diagram below shows the major clocks and how their names evolve as they are routed
through various code modules.

infrastructure

example_top SOFG

clk_mem
CLK_IBUF

sys_clk
\ mmem_elk MMCHM

clk_rd_base routed back into
sys_tlk_p

example_top
sys_tlk_n L clk
BUFG
"INPUT_CLE_TYPE"

touser logic
* (as needed)

—————— routedto
clk_ref_p PH se_clk_ref [\\ clk_ref_bufy

*memc_ui_top
+ [*ini_merm_pattern_ctr
*mech_traffic_gen

clk_ref

clk_ref_n _ BUFG delay iodelay_ctrl_rdy
J7;

logic

CLK_IEUF

iodelay_ctrl
*it's assurmed INPUT_CLK_T¥PE must select "SINGLE_ENDED" to produce indelay_ctrl_rdy signal

